
NAG C Library Function Document

nag_fft_3d (c06pxc)

1 Purpose

nag_fft_3d (c06pxc) computes the three-dimensional discrete Fourier transform of a trivariate sequence of
complex data values (using complex data type).

2 Specification

void nag_fft_3d (Nag_TransformDirection direct, Integer n1, Integer n2, Integer n3,
Complex x[], NagError *fail)

3 Description

nag_fft_3d (c06pxc) computes the three-dimensional discrete Fourier transform of a trivariate sequence of
complex data values zj1j2j3 , where j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and j3 ¼ 0; 1; . . . ; n3 � 1.

The discrete Fourier transform is here defined by

ẑzk1k2k3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2n3

p
Xn1�1

j1¼0

Xn2�1

j2¼0

Xn3�1

j3¼0

zj1j2j3 � exp �2�i
j1k1
n1

þ j2k2
n2

þ j3k3
n3

�� ��
;

where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1 and k3 ¼ 0; 1; . . . ; n3 � 1.

(Note the scale factor of 1ffiffiffiffiffiffiffiffiffiffiffi
n1n2n3

p in this definition.) The minus sign is taken in the argument of the

exponential within the summation when the forward transform is required, and the plus sign is taken when
the backward transform is required. A call of the function with direct ¼ Nag ForwardTransform
followed by a call with direct ¼ Nag BackwardTransform will restore the original data.

This function performs multiple one-dimensional discrete Fourier transforms by the fast Fourier transform
(FFT) algorithm (Brigham (1974)).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983b) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Parameters

1: direct – Nag_TransformDirection Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then direct must be
set equal to Nag_ForwardTransform. If the Backward transform is to be computed then direct
must be set equal to Nag_BackwardTransform.

Constraint: direct ¼ Nag ForwardTransform or Nag BackwardTransform.

2: n1 – Integer Input

On entry: the first dimension of the transform, n1.

Constraint: n1 � 1.

3: n2 – Integer Input

On entry: the second dimension of the transform, n2.

Constraint: n2 � 1.

c06 – Fourier Transforms c06pxc

[NP3645/7] c06pxc.1

4: n3 – Integer Input

On entry: the third dimension of the transform, n3.

Constraint: n3 � 1.

5: x½dim� – Complex Input/Output

Note: the dimension, dim, of the array x must be at least n1� n2� n3.

On entry: the complex data values. Data values are stored in x using column-major ordering for
storing multi-dimensional arrays; that is, zj1j2j3 is stored in x½j1 þ n1j2 þ n1n2j3�.

On exit: the corresponding elements of the computed transform.

6: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n1 = hvaluei.
Constraint: n1 � 1.

On entry, n2 = hvaluei.
Constraint: n2 � 1.

On entry, n3 = hvaluei.
Constraint: n3 � 1.

n3 must have less than 31 prime factors: n3 ¼ hvaluei.
n2 must have less than 31 prime factors: n2 ¼ hvaluei.
n1 must have less than 31 prime factors: n1 = hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to n1n2n3 � logðn1n2n3Þ, but also depends on the
factorization of the individual dimensions n1, n2 and n3. The function is somewhat faster than average if
their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

c06pxc NAG C Library Manual

c06pxc.2 [NP3645/7]

9 Example

This program reads in a trivariate sequence of complex data values and prints the three-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may
be compared to the original data values.

9.1 Program Text

/* nag_ftt_3d(c06pxc) Example Program
*
* Copyright 2002 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, k, n1, n2, n3;
Integer exit_status=0;
NagError fail;
/* Arrays */
Complex *x=0;

#define X(I,J,K) x[(K-1)*n2*n1 + (J-1)*n1 + I - 1]

INIT_FAIL(fail);
Vprintf("c06pxc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld%ld%ld", &n1, &n2, &n3);
Vscanf("%*[^\n]");
if (n1*n2*n3>=1)

{
/* Allocate memory */
if (!(x = NAG_ALLOC(n1 * n2 * n3, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in complex data and print out. */
for (i = 1; i <= n1; ++i)

{
for (j = 1; j <= n2; ++j)

{
for (k = 1; k <= n3; ++k)

{
Vscanf(" (%lf, %lf) ", &X(i,j,k).re, &X(i,j,k).im);

}
}

}
Vscanf("%*[^\n]");
Vprintf("\nOriginal data values\n\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, x, n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 1\n", Nag_NoLabels, 0,
Nag_NoLabels, 0, 90, 0, 0, &fail);

Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, &X(2,1,1), n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 2\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

c06 – Fourier Transforms c06pxc

[NP3645/7] c06pxc.3

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute transform */
c06pxc(Nag_ForwardTransform, n1, n2, n3, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\nComponents of discrete Fourier transforms\n\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, x, n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 1\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, &X(2,1,1), n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 2\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute inverse transform */
c06pxc(Nag_BackwardTransform, n1, n2, n3, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\nOriginal data as restored by inverse transform\n\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, x, n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 1\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, &X(2,1,1), n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 2\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
Vfprintf(stderr,"\nInvalid value of n1, n2 or n3.\n");

END:
if (x) NAG_FREE(x);

return exit_status;
}

c06pxc NAG C Library Manual

c06pxc.4 [NP3645/7]

9.2 Program Data

c06pxc Example Program Data
2 3 4 : values of n1, n2, n3

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720)
(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352)
(0.494, 0.111) (0.489, 0.151) (0.463, 0.268) (0.391, 0.454)
(0.403, 0.430) (0.385, 0.466) (0.323, 0.568) (0.194, 0.720)

9.3 Program Results

c06pxc Example Program Results

Original data values

X(i,j,k) for i = 1

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352)
(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454)

X(i,j,k) for i = 2

(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454)
(0.494, 0.111) (0.489, 0.151) (0.463, 0.268) (0.391, 0.454)

Components of discrete Fourier transforms

X(i,j,k) for i = 1

(3.292, 0.102) (0.051,-0.042) (0.113, 0.102) (0.051, 0.246)
(1.225,-1.620) (0.355, 0.083) (0.000, 0.162) (-0.355, 0.083)
(0.143,-0.086) (0.016, 0.153) (-0.024, 0.127) (-0.050, 0.086)

X(i,j,k) for i = 2

(1.225,-1.620) (0.355, 0.083) (0.000, 0.162) (-0.355, 0.083)
(0.143,-0.086) (0.016, 0.153) (-0.024, 0.127) (-0.050, 0.086)
(0.424, 0.320) (0.020,-0.115) (0.013,-0.091) (-0.007,-0.080)

Original data as restored by inverse transform

X(i,j,k) for i = 1

(1.000,-0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352)
(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454)

X(i,j,k) for i = 2

(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454)
(0.494, 0.111) (0.489, 0.151) (0.463, 0.268) (0.391, 0.454)

c06 – Fourier Transforms c06pxc

[NP3645/7] c06pxc.5 (last)

	c06pxc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	direct
	n1
	n2
	n3
	x
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

