
NAG C Library Function Document

nag_fft_3d (c06pxc)

1 Purpose

nag_fft_3d (c06pxc) computes the three-dimensional discrete Fourier transform of a trivariate sequence of
complex data values (using complex data type).

2 Specification

void nag_fft_3d (Nag_TransformDirection direct, Integer n1, Integer n2, Integer n3,
Complex x[], NagError *fail)

3 Description

nag_fft_3d (c06pxc) computes the three-dimensional discrete Fourier transform of a trivariate sequence of
complex data values zj1j2j3 , where j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1 and j3 ¼ 0; 1; . . . ; n3 � 1.

The discrete Fourier transform is here defined by
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where k1 ¼ 0; 1; . . . ; n1 � 1, k2 ¼ 0; 1; . . . ; n2 � 1 and k3 ¼ 0; 1; . . . ; n3 � 1.

(Note the scale factor of 1ffiffiffiffiffiffiffiffiffiffiffi
n1n2n3

p in this definition.) The minus sign is taken in the argument of the

exponential within the summation when the forward transform is required, and the plus sign is taken when
the backward transform is required. A call of the function with direct ¼ Nag ForwardTransform
followed by a call with direct ¼ Nag BackwardTransform will restore the original data.

This function performs multiple one-dimensional discrete Fourier transforms by the fast Fourier transform
(FFT) algorithm (Brigham (1974)).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983b) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Parameters

1: direct – Nag_TransformDirection Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then direct must be
set equal to Nag_ForwardTransform. If the Backward transform is to be computed then direct
must be set equal to Nag_BackwardTransform.

Constraint: direct ¼ Nag ForwardTransform or Nag BackwardTransform.

2: n1 – Integer Input

On entry: the first dimension of the transform, n1.

Constraint: n1 � 1.

3: n2 – Integer Input

On entry: the second dimension of the transform, n2.

Constraint: n2 � 1.
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4: n3 – Integer Input

On entry: the third dimension of the transform, n3.

Constraint: n3 � 1.

5: x½dim� – Complex Input/Output

Note: the dimension, dim, of the array x must be at least n1� n2� n3.

On entry: the complex data values. Data values are stored in x using column-major ordering for
storing multi-dimensional arrays; that is, zj1j2j3 is stored in x½j1 þ n1j2 þ n1n2j3�.

On exit: the corresponding elements of the computed transform.

6: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n1 = hvaluei.
Constraint: n1 � 1.

On entry, n2 = hvaluei.
Constraint: n2 � 1.

On entry, n3 = hvaluei.
Constraint: n3 � 1.

n3 must have less than 31 prime factors: n3 ¼ hvaluei.
n2 must have less than 31 prime factors: n2 ¼ hvaluei.
n1 must have less than 31 prime factors: n1 = hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to n1n2n3 � logðn1n2n3Þ, but also depends on the
factorization of the individual dimensions n1, n2 and n3. The function is somewhat faster than average if
their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.
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9 Example

This program reads in a trivariate sequence of complex data values and prints the three-dimensional
Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may
be compared to the original data values.

9.1 Program Text

/* nag_ftt_3d(c06pxc) Example Program
*
* Copyright 2002 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, k, n1, n2, n3;
Integer exit_status=0;
NagError fail;
/* Arrays */
Complex *x=0;

#define X(I,J,K) x[(K-1)*n2*n1 + (J-1)*n1 + I - 1]

INIT_FAIL(fail);
Vprintf("c06pxc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld%ld%ld", &n1, &n2, &n3);
Vscanf("%*[^\n]");
if (n1*n2*n3>=1)

{
/* Allocate memory */
if ( !(x = NAG_ALLOC(n1 * n2 * n3, Complex)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in complex data and print out. */
for (i = 1; i <= n1; ++i)

{
for (j = 1; j <= n2; ++j)

{
for (k = 1; k <= n3; ++k)

{
Vscanf(" ( %lf, %lf ) ", &X(i,j,k).re, &X(i,j,k).im);

}
}

}
Vscanf("%*[^\n]");
Vprintf("\nOriginal data values\n\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, x, n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 1\n", Nag_NoLabels, 0,
Nag_NoLabels, 0, 90, 0, 0, &fail);

Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, &X(2,1,1), n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 2\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);
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if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute transform */
c06pxc(Nag_ForwardTransform, n1, n2, n3, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\nComponents of discrete Fourier transforms\n\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, x, n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 1\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, &X(2,1,1), n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 2\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute inverse transform */
c06pxc(Nag_BackwardTransform, n1, n2, n3, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\nOriginal data as restored by inverse transform\n\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, x, n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 1\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n2,

n3, &X(2,1,1), n1*n2, Nag_BracketForm, "%6.3f",
"X(i,j,k) for i = 2\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
Vfprintf(stderr,"\nInvalid value of n1, n2 or n3.\n");

END:
if (x) NAG_FREE(x);

return exit_status;
}
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9.2 Program Data

c06pxc Example Program Data
2 3 4 : values of n1, n2, n3

( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352)
( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454)
( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720)
( 0.500, 0.500) ( 0.499, 0.040) ( 0.487, 0.159) ( 0.436, 0.352)
( 0.494, 0.111) ( 0.489, 0.151) ( 0.463, 0.268) ( 0.391, 0.454)
( 0.403, 0.430) ( 0.385, 0.466) ( 0.323, 0.568) ( 0.194, 0.720)

9.3 Program Results

c06pxc Example Program Results

Original data values

X(i,j,k) for i = 1

( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352)
( 0.500, 0.500) ( 0.499, 0.040) ( 0.487, 0.159) ( 0.436, 0.352)
( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454)

X(i,j,k) for i = 2

( 0.500, 0.500) ( 0.499, 0.040) ( 0.487, 0.159) ( 0.436, 0.352)
( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454)
( 0.494, 0.111) ( 0.489, 0.151) ( 0.463, 0.268) ( 0.391, 0.454)

Components of discrete Fourier transforms

X(i,j,k) for i = 1

( 3.292, 0.102) ( 0.051,-0.042) ( 0.113, 0.102) ( 0.051, 0.246)
( 1.225,-1.620) ( 0.355, 0.083) ( 0.000, 0.162) (-0.355, 0.083)
( 0.143,-0.086) ( 0.016, 0.153) (-0.024, 0.127) (-0.050, 0.086)

X(i,j,k) for i = 2

( 1.225,-1.620) ( 0.355, 0.083) ( 0.000, 0.162) (-0.355, 0.083)
( 0.143,-0.086) ( 0.016, 0.153) (-0.024, 0.127) (-0.050, 0.086)
( 0.424, 0.320) ( 0.020,-0.115) ( 0.013,-0.091) (-0.007,-0.080)

Original data as restored by inverse transform

X(i,j,k) for i = 1

( 1.000,-0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352)
( 0.500, 0.500) ( 0.499, 0.040) ( 0.487, 0.159) ( 0.436, 0.352)
( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454)

X(i,j,k) for i = 2

( 0.500, 0.500) ( 0.499, 0.040) ( 0.487, 0.159) ( 0.436, 0.352)
( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454)
( 0.494, 0.111) ( 0.489, 0.151) ( 0.463, 0.268) ( 0.391, 0.454)
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